A novel approach for the study of the temporal coherence of global time series

Francesco Finazzi
University of Bergamo - Dept. of Engineering

Joint work with Claire Miller and Marian Scott
University of Glasgow

10-12th December 2012 - 1st GloboLakes Scientific Workshop
Introduction

Global change detection

- The study of the temporal coherence of global phenomena can help the detection and the understanding of (possible) global changes.
 - What is temporal coherence?
 - How can it be helpful?
 - How to study temporal coherence?
Temporal coherence - Loose definition

- Two phenomena are temporally coherent if they share a similar temporal pattern
 - Global coherence
 - Local coherence
Global coherency

No coherency

Local coherency

Time
How can coherence be helpful?

- The study of coherence may be useful in detecting global changes. Why?
 - It may be difficult to detect a global change by looking at a single time series (noise or signal?)
 - It may be difficult to detect a global change by looking at a large number of time series
 - It should be easier to detect a global chance by looking at coherent time series
How can coherence be helpful?

- The study of coherence may be useful in detecting global changes. Why?
 - It may be difficult to detect a global change by looking at a single time series (noise or signal?)
 - It may be difficult to detect a global change by looking at a large number of time series
 - It should be easier to detect a global chance by looking at coherent time series
How can coherence be helpful?

The study of coherence may be useful in detecting global changes. Why?

- It may be difficult to detect a global change by looking at a single time series (noise or signal?)
- It may be difficult to detect a global change by looking at a large number of time series
- It should be easier to detect a global chance by looking at coherent time series
How can coherence be helpful?

- The study of coherence may be useful in detecting global changes. Why?
 - It may be difficult to detect a global change by looking at a single time series (noise or signal?)
 - It may be difficult to detect a global change by looking at a large number of time series
 - It should be easier to detect a global change by looking at coherent time series
How to study temporal (global) coherence?

- **Coherence** is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series
How to study temporal (global) coherence?

- Coherence is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series
How to study temporal (global) coherence?

- Coherence is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series
How to study temporal (global) coherence?

- Coherence is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series
How to study temporal (global) coherence?

- Coherence is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series
How to study temporal (global) coherence?

- Coherence is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - *Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret*
 - It is useful to identify groups of coherent time series
How to study temporal (global) coherence?

- Coherence is usually defined between pairs of time series and
 - it is often used as a synonym of temporal cross correlation
 - it has a precise formulation in signal processing which extends the definition of temporal correlation

- What if we are dealing with a large number of time series?
 - In general, a large number of time series is not jointly coherent
 - Pairwise temporal correlation gives rise to a (large) matrix not easy to interpret
 - It is useful to identify groups of coherent time series
A new definition of coherence

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.

- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group

- In other words: cluster analysis
A new definition of coherence

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.

- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group

- In other words: cluster analysis
A new definition of coherence

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.

- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group

- In other words: cluster analysis
A new definition of coherence

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.

- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group

- In other words: cluster analysis
A new definition of coherence

- A group of time series are jointly coherent when, apart from random noise, they share the same temporal pattern along the entire temporal frame of observation.

- The study of the temporal coherence consists in
 - Estimating the number of groups of temporally coherent series
 - Allocating each time series to belong to a group

- In other words: cluster analysis
Time series clustering

Observed time series

Latent clusters
Time series clustering

Observed time series

Latent clusters
Case study
ARC-Lake dataset - LWST time series

http://www.geos.ed.ac.uk/arclake/data.html
D-STEM software

- **D-STEM**: Distributed Space Time Expectation Maximization
 - Matlab® software for the statistical modelling of space-time data
 - Distributed and parallel computing
 - Large datasets - Tested up to 20’000 time series
 - Now includes clustering capabilities
Conclusions

- The clustering of global time series can be a fundamental step in the detection of global changes.

- We developed a clustering technique:
 - Based on a sound statistical model
 - Able to provide the number of clusters and the cluster membership
 - Able to work with large datasets
 - Implemented within the D-STEM software

- Future applications: highly noisy data and missing data (TOC dataset)
TOC dataset

Month vs. TOC concentration
TOC dataset - Preliminary results

Cluster 1 - 140 time series

Cluster 2 - 66 time series

Cluster 3 - 63 time series

Cluster 4 - 64 time series

Month
TOC dataset - Preliminary results
References

