WP5: Detecting spatial & temporal patterns

Claire Miller and Marian Scott
Statistics, University of Glasgow
WP5: Detecting spatial & temporal patterns

Aim:
To assess the extent of temporal coherence for individual remotely-sensed lake characteristics & to define the nature of any clusters of coherent lakes.

Contributors:
University of Glasgow Centre for Ecology & Hydrology

Inputs: EO data products from WPs 1,2 and 3.

Outputs: Temporal patterns and clusters of lakes for WPs 6 and 7
Temporal coherence

• The degree to which different lakes behave similarly through time.

• Understanding the spatial extent of coherence for different lake characteristics is a valuable tool to extrapolate from measured to unmeasured lakes.

• Access to 1000 long-term datasets will enable assessment of the degree of change in the coherence of seasonal patterns for lakes globally.
WP5: Detecting spatial & temporal patterns

Objectives

5.1 Assess the present state & evidence for long-term change in the 1000 lakes.

5.2 Identify patterns of temporal coherence for individual remotely sensed lake characteristics & the spatial extent of coherence.

5.3 Identify phenological patterns of change in remotely sensed lake characteristics.
WP5: Detecting spatial & temporal patterns

Implementation

June 2014 - September 2017

PDRA in Statistics at Glasgow University to be appointed from Sept 2013.

Develop and apply statistical models to the remotely sensed observations of lake characteristics to deliver temporal pattern analysis and spatial clustering.

Here are some example analyses for each work package deliverable.
WP5: Detecting spatial & temporal patterns

D5.1/5.2 Assess the present state & identify long-term patterns of change in global lakes.

Log chlorophyll at Loch Leven

Examples:

- Long-term trends for each season
- Long-term trend and seasonal patterns
- Changes in seasonality over time

Long-term trend in Spring log chlorophyll.
WP5: Detecting spatial & temporal patterns

D5.1/5.2 Assess the present state & identify long-term patterns of change in global lakes.

Log chlorophyll, long-term trend with variability band

Log chlorophyll, seasonal pattern with variability band
Identify phenological patterns of change in remotely sensed lake characteristics.

Ferguson et al. (2008), Carvalho et al. (2012)
WP5: Detecting spatial & temporal patterns

D5.3/5.4 Identification of patterns of coherence, clusters of common signals and non-conforming lakes

Statistical techniques include:

- Dynamic Factor Analysis
- Functional Data Analysis
- State space model for clustering, Finazzi et. al (2012)

TOC fitted curves for 15 lake sites. Two common trends identified. Reid (2012)
D5.3/5.4 Identification of patterns of coherence, clusters of common signals and non conforming lakes

Clustering Scottish lakes using chlorophyll

Haggarty et. al (2012), Environmetrics
WP5: Detecting spatial & temporal patterns

Work Package Challenges

• Obtaining an appropriate length of time series to enable identification of patterns of change.

• Data resolution – comparing different levels of spatial and temporal data.

• Computational challenges with modelling and clustering data from 1000 lakes.
References

